下方恒定乘积曲线: gamma是一个很小的正小数,在曲线形态上会比上方曲线更缩进原点。如前所述,CurveV2 需要引入这么一条gamma曲线,使得V2 曲线摆脱V1曲线在中、尾段的劣势(流动性枯竭和快速响应汇率变化),也就是让曲线拥有更大的后半段曲率。在这个基本原理的指引下,我们需要逆向来理解表达式的构成—— 当坐标变化不断向横纵坐标轴的远方移动时,越趋近无穷大,V2曲线形态越向下方恒定乘积曲线拟合。即K0 趋近gamma,CurveV2 表达式reduction: 在均衡点处,scaledbalance 序列内元素相等(恒定乘积特性)—— 随着市场汇率的变化、兑换的发生、LP做市行为的影响,系统坐标点会逐渐偏离原始“均衡点”,如果不加以纠正曲线形态,不仅会造成流动性的聚集性减弱,还会带来无常损失。CurveV2 为此提出了MarketPrice Update 机制【1】—— i)exponentially moving average (EMA) price oracle ii)profit measurement iii)repricing algorithm (depends on i and ii) 概括来讲,系统会通过经典的内部预言机机制EMA不断捕获系统内汇率的移动序列,然后不断在每一次交易和做市行为后根据priceoracle 来更新一种名为收益度量(profit)的变量Xcp。 这种变量可以理解为每一次价格偏移距离原始均衡点的幅度,可以直观理解为,如果汇率变化幅度不大,系统公式将依旧以原始均衡点为根基,如果汇率变化非常大,坐标点在曲线上偏移很大,则系统应该重建公式,更换新的“均衡点”根基,以此来缩小无常损失和重新聚集流动性。Xcp这个变量便是用来量化合适可以更换公式和均衡点的手段。 如上所述,当Xcp突破阈值后,系统会根据此时更新的oracleprice 来更新price_scale,以此来为新公式定位新的均衡点位置,随后更新新的D值,获取新的表达式。 这样,原本固定的Curve V1曲线便会随着场内汇率的大偏移不断变换均衡点,使得永远在当前汇率附近具备最大的流动性,及时对抗套利者,减缓无常损失。论文中有关于此项机制非常详细的参数化定义,也是实现的复杂之处。 总结 Michael Egorov一如既往地不愿意多说,所以我们看Curve V2非常晦涩。本文介绍了V2引领性的两大创新机制:新曲线和repegging。这条新曲线不仅静态复杂,还拥有了动态属性,可以根据EMA 和Xcp智能响应系统偏移,让池子流动性最大化地聚集在当前汇率范围内,极大地提高了动态资本效率,这是可以超越Uni V3的地方。我们最终会发现,CurveV2 可以与Uni V3再组合。 (责任编辑:admin) |