以太坊社区和其它一些新型协议也注意到了这些问题,并尝试了不同的解决方案。例如,以太坊通过一系列硬分叉来增加更多有用的预编译合约,并对操作码重新定价;Tezos 增加了 Secp256r1 作为新的发送方身份验证算法,等等。 问题在于,这与人们当时在「山寨币」时代解决应用需求的方式毫无区别。更麻烦的是,这些设计选择可能比应用程序更加复杂和难以理解,而且通常不存在最佳解决方案。面对不同的情况,可能会有不同的最优解。即使遇到极少数存在一般最优解的情况,我们也无法保证当下的最佳选择在将来还是如此。因此,更好的方式是,我们再次从新的层面去思考:与其继续通过需要核心团队协调的硬分叉来增加新功能,我们是否可以创建新的抽象并给予智能合约开发者充分的自由? Nervos CKB 回答了这个问题,并创建了新抽象的层级。例如,CKB 交易 是抽象的,因为用户和开发者不仅限于使用默认的 Blake2b-Secp256k1 验证算法,任何人都能将其替换成 [10] 诸如 Blake2b-Secp256r1、Keccak256-ED25519 或 Blake2b-SHA3-Schnorr 的其他方式;CKB-VM 是抽象的,里面不包含任何预编译合约,即使是像哈希函数 Blake2b 和签名验证算法 Secp256k1 这样的默认密码学原语也只是在虚拟机中运行的智能合约,换言之,这些密码学原语与应用开发者创建的智能合约在同一个环境中运行,没有任何特权;Cell 模型是抽象的,其中每个 Cell 只是单纯的数据存储空间,没有任何内部结构,其布局完全取决于开发者,就像我们在 sUDT[11] 和 xUDT[12] 看到的那样。 由于 CKB 在很多方面都是抽象的,开发者被赋予了更多的自由和新能力。CKB 是以太坊的抽象,正如以太坊是比特币的抽象那样。抽象让 CKB 成为了简单却又强大的区块链,并将很多工作转移到了链下(包括 Layer 2)。以太坊对比特币进行抽象的结果是将开发者分成了两部分:一部分是聚焦于底层区块链的区块链开发者,另一部分是构建应用的智能合约开发者。可以预见 CKB 对以太坊进行抽象也会将智能合约开发者分成系统合约开发者和应用合约开发者,前者聚焦于系统级智能合约,如密码学原语、lock script,甚至是内存管理模块。 最近以太坊社区已经认识到了区块链抽象的重要性并提出了一些相关的改进 [13]。如果这些改进得以实现,我认为它会让以太坊变得比现在更加抽象,并与其它做不到这一点的项目拉开更大的距离。然而我不认为这些关于区块链抽象的提案能让以太坊达到与 CKB 同等的抽象层级,因为要对一个正在运行的生态系统做如此底层的改变是极其困难的,就像我们无法在不破坏宇宙的情况下改变普朗克常数那样。例如,账户抽象会为交易池等重要模块引入新的安全复杂性——此时每当签署新的交易时,验证节点都需要处理任意计算,而非固定的签名验证。 (责任编辑:admin) |