除了快速提款之外,还有一个典型需求,那就是在 L2 与其他 L2 之间快速转账。常规的途径,是要先从 L2-1 提款到 L1 ,再从 L1 存入到目标 L2-2 ,但这样既缓慢,又不经济。 鉴于上述需求,不少提供 L2→L1 快速提款和 L2⇋L2 快速转账的跨层快速资产桥被开发出来。 跨层快速资产桥的技术本质快速资产桥本身并没有加快原有的资产流转通道,而是另起炉灶,构建了一个新的资产流转通道。后文行文中,我们将分别称为「原始通道」和「快速通道」。 在快速通道中,增加了一个新角色,来为用户提供流动性垫付。用户在源账本向流动性提供者付款,流动性提供者在目标账本上向用户的目标地址付款,然后,流通性提供者再通过原始通道,重新平衡自己的资产,实现流动性回归。 我们发现跨层快速资产桥,除了支持 L2→L1 快速提款和 L2⇋L2 快速转账,往往也可以支持 L2 与其他 EVM 兼容链之间的快速转账,这是因为 EVM 兼容链往往与以太坊建立了桥接关系(包括成为以太坊的侧链),与 L2 之间,存在一条多跳的原始通道。 有些文献把跨层快速资产桥的流动性垫付模式归结为了一种新的跨链方案,并称之为「流动性互换」,但 Paka Labs 认为,在进行跨链技术类型归结时,还是应该关注其核心——信任机制。根据其信任机制,所有的跨层快速资产桥,基本可以落入两个框架内,一个是原子交易模式,一个是见证人模式。我们将分别介绍几个典型项目: 原子交易型跨层快速资产桥cBridge ( celer.network ) cBridge 是以太坊 L2 层扩容平台 celer.network 搭建的跨层快速资产桥。 cBridge 采用了哈希时间锁方案,并让中继节点(Rely NODE)作为公共交易对手方。一笔交易的完成过程如下:
我们发现,上述过程和典型的基于哈希时间锁略有不同,典型的哈希时间锁交易应该是由中继节点 Confirm 源链上的 TranferOut ,而由用户 Confirm 目标链上的 TransferIn 。 cBridge 如此设计的目的是改善用户体验,避免用户在跨层交易过程中需要切换钱包。优化后的交易过程中,用户的所有操作都在源账本完成,将无须切换到目标账本钱包进行任何操作。 (责任编辑:admin) |