具体而言,虽然四川雨季的发电量是旱季的三倍,但是水电并非持续产生。水力发电的波动导致矿工只能在有限的时间中利用廉价的水电。 在 2019 年一项由 Christian Stoll 等人进行关于比特币碳足迹的研究中,引入了根据 IP 地址对矿工进行定位,以考虑地区差异对整个比特币网络进行加权平均碳强度计算,得出的值为 480 -500,与上文的 475 相差较小。 同样,使用类似的方法,剑桥大学于 2020 年提供了一个关于比特币矿工随时间推移的位置变化图。通过位置数据以及不同电网的碳强度填充不同颜色,可以得到如下图所示的旱季挖矿活动各地区占比。因此,按年计算,可再生能源对比特币网络的贡献占比依然很低。根据剑桥大学 2020 年的采访,矿工表示大约 39% 的能源消耗来自可再生能源。 比特币和 VISA、黄金谁消耗更多能源?为了更好衡量比特币网络能源的消耗量,可以使用 VISA 作为参照物。2019 年,VISA 一共处理了 1,383 亿笔交易。VISA 表示,在全球范围内的运营活动一共消耗了 74 万千兆焦耳。这意味着 VISA 消耗的能源相当于 19,304 个美国家庭的消耗量。经过计算,每笔 VISA 交易的碳足迹为 0.45 gCO2eq。 这些数据说明,目前比特币和 VISA 还有很大的差距,每笔比特币交易的能源密集度都高于 VISA。并且,两者碳足迹的差距更是相差甚远。 当然,VISA 并不能完全代表全球金融系统。但是,即使与常规金融系统中的非现金交易相比,比特币交易都需要消耗更多的能源。 如果换一个视角,将比特币视为「数字黄金」的话,那么可以比较比特币挖矿与黄金挖矿。目前,每年大约开采 3,531 吨黄金,排放约 8,100 万吨 CO2。不过,这一类型的比较存在一定的缺陷,如黄金开采可以暂停而比特币挖矿不能暂停。 有限的扩展性导致极端的碳足迹每笔比特币交易产生夸张碳排放的主要原因在于底层区块链不仅建立在耗能算法上,在交易处理能力方面也极其有限。在乐观情况下,比特币每年可以处理约 2.2 亿笔交易。而全球金融系统每年处理超过 7,000 亿次支付,VISA 一类的支付提供商每秒可以处理超过 65,000 次交易。由于交易处理速度的限制,比特币无法实现任何形式的被主流所采用并作为全球货币或支付系统。 (责任编辑:admin) |