洞见科技是这一方向的典型代表。 在资源积累、技术发展、市场推广方面,洞见科技的行动都展现出与场景深度融合的能力与倾向。 首先看资源积累。对于数据资源,在市场化数据、生态数据、政/府数据方面,洞见科技都有较为深厚的积累。 其次看技术发展。洞见科技在技术与场景进行深度融合方面走得更远,这主要体现在数据处理和场景应用两个方面。 在数据处理方面,结合多年的数据挖掘经验,洞见科技正在让数据的预处理更加自动化和智能化,从而提高数据在隐私计算环节的计算效率。 在场景应用方面,洞见科技将隐私计算技术与其他金融科技进行了深度融合。 再次看市场推广。洞见科技的市场推广策略也是与对场景的服务相配合的。 为了以更少的人力投入触达更多的金融机构,不少隐私计算厂商会依靠合作伙伴来进行部分市场推广。这些合作伙伴大多是与金融机构此前有业务合作的公司,比如金融 IT 服务商等。 洞见科技的做法则完全不同。除了少数政企客户之外,大多数情况下,洞见科技都会依靠自己的市场人员与客户直接接触。这样做是因为,在金融机构购买洞见科技的隐私计算软件之后,洞见科技后续要通过这个软件平台,为金融机构提供智能风控、智能营销、反洗钱、资产风险扫描等方面的服务。洞见科技需要与客户直接接触,深入了解客户的业务,帮助客户解决问题。 3. 隐私计算叠加数据运营 此类隐私计算公司,初期是从某一场景切入,但是其最终目标并非专注于场景服务,而是致力于打通数据流通链路,为数据流通提供平台服务。 蓝象智联是这一方向的典型代表。 蓝象智联首先进入的是金融行业。在金融机构一侧,不少机构对如何应用互联网大数据的能力还有待提升。蓝象智联会在业务开展过程中,帮助金融机构了解不同的数据源在金融业务中应当如何使用。在数据源一侧,数据源机构掌握的数据维度非常多,但是数据源不做金融业务,也不知道金融机构需要哪些数据,蓝象智联也会帮助数据源对数据进行处理和封装,使得杂乱无章的数据变成符合金融机构应用需求的标准化的数据资产。 这些行动的目标在于,打通数据交易的链路,使得数据源和数据使用方的需求能够真正对接起来,数据在蓝象智联的平台上能够被越来越多地应用,从而使得蓝象智联的系统吸引越来越多的数据源和数据使用方,成为一个真正的平台。 4. 开放平台 (责任编辑:admin) |