6.3. 其他加密货币交易中的其他系统交易方式主要包括知情交易。利用美元/比特币汇率交易数据,Feng等人[104]发现了比特币市场知情交易的证据,与卖方发起(买方发起)订单的分位数相比,买方发起(卖方发起)订单的分位数在大的正(负)事件前异常高;本研究采用了一个新的指标,其灵感来源于容积不平衡指标[93]。比特币市场上知情交易的证据表明,投资者在获得信息之前就从其私人信息中获利。 7. 新兴加密交易技术 7.1. 加密货币计量经济学Copula-quantile因果分析和Granger因果分析是研究加密货币交易分析中因果关系的两种方法。Bouri等人[41]对加密货币市场的波动性应用了Copula-quantile因果关系方法。实验的方法扩展了Lee和Yang[170]在2014年提出的Copula-Granger分布因果关系(CGCD)方法。实验用copula函数构造了两个CGCD测试。参数检验使用六个参数copula函数来发现变量之间的依赖密度。这些函数的性能矩阵随copula密度的变化而变化。研究的重点是三个分布区域:左尾(1%、5%、10%分位数)、中心区(40%、60%分位数和中位数)和右尾(90%、95%、99%分位数)。该研究提供了从交易量到七种大型加密货币左右尾收益的格兰杰因果关系的重要证据。Elie等人[42]通过Bodart和Candelon[38]的频域检验了主要加密货币波动性之间的因果关系,并区分了暂时性和永久性因果关系。结果表明,长期而言,永久性冲击对解释Granger因果关系更为重要,而短暂性冲击则主导了小型加密货币的因果关系。Badenhorst[13]试图通过Granger因果关系方法和ARCH(1,1)揭示现货和衍生品市场交易量是否影响比特币价格波动。研究结果表明,现货交易量对价格波动有显著的正向影响,而加密货币波动与衍生品市场的关系不确定。Elie等人[45]使用了动态等相关(DECO)模型,并报告了12种主要加密货币之间平均收益均衡相关性随时间变化的证据。结果显示,尽管2018年加密货币价格大幅下跌,但加密货币市场整合程度仍有所提高。此外,交易量的衡量和不确定性是一体化的关键决定因素。 时间序列研究中的一些计量经济学方法,如GARCH和BEKK,已经被用于加密货币交易的文献中。Conrad等人[81]使用GARCH-MIDAS模型提取比特币市场的长期和短期波动成分。该模型的技术细节将条件方差分解为低频分量和高频分量。研究结果发现,标准普尔500指数的已实现波动率对长期比特币波动率具有显著的负向影响,标准普尔500指数的波动率风险溢价对长期比特币波动率具有显著的正向影响。Ardia等人[8]使用马尔可夫转换GARCH(MSGARCH)模型来检验比特币对数收益率的GARCH波动动力学中是否存在制度变迁。此外,利用贝叶斯方法估计模型参数和计算VaR预测。结果表明,MSGARCH模型在风险价值预测方面明显优于单机制GARCH模型。Troster等人[239]进行了一般GARCH和GAS(广义自回归分数)分析,对比特币的收益和风险进行建模和预测。实验发现,重尾分布的GAS模型能够为比特币的收益和风险建模提供最佳的样本外预测和拟合优度属性。研究结果还说明了对比特币收益率进行过度峰度建模的重要性。Charles等人[65]研究了四个加密货币市场,包括比特币、Dash、Litecoin和Ripple。结果表明,除了Dash市场外,加密货币收益率的显著特征是存在跳跃和结构性突破。考虑了四种GARCH模型(即GARCH、APARCH、IGARCH和FIGARCH)和三种具有结构突变的收益类型(原始收益、跳跃过滤收益和跳跃过滤收益)。这项研究表明了加密货币波动性跳跃和结构突破的重要性。 (责任编辑:admin) |