织梦CMS - 轻松建站从此开始!

我的网站

当前位置: 主页 > 比特币 > 比特币资讯

如何准确预测加密货币价格?交易,技术和社交情绪指标的深度学习算

时间:2021-03-02 14:30来源:未知 作者:admin 点击:
原标题:《加密货币价格预测:交易,技术和社交情绪指标的深度学习研究》 币圈深度参与者和holder获得更高收益, 而不是trader,这或许是我们的错觉,因为加密货币资产天然适合种套

原标题:《加密货币价格预测:交易,技术和社交情绪指标的深度学习研究》

币圈深度参与者和holder获得更高收益, 而不是trader,这或许是我们的错觉,因为加密货币资产天然适合种套利高频机器人交易。

虽然像我们这些有点信仰又不是老炮的散户韭菜,对交易技术指标有点不屑。但面对币价波动,我们也不那么佛系,价格涨跌或多或少扰乱我们的情绪。

而对于币价的预测或感觉,仅凭社交情绪。本文从大量的技术,交易,社交情绪指标通过各种深度学习算法得出的结论是,综合技术,交易,社交情绪指标的深度学习结果对预测币价比单一指标要好。而Github和Reddit的基于技术开发人员的情绪指标更具有参考价值。

虽然这不一定正确更不是真理,毕竟深度学习算法和数据都可能有问题。然而这足足30来页的论文足已令我们恐惧,如今能用到如此高深的算法和有如此开放丰富的数据对加密资产交易预测,我们散户韭菜如何是好?

也许只有做好个人功课。我们为什么要投资这个项目?我们如何能为项目贡献?我如何才能不在乎币价?

Title: On Technical Trading and Social Media Indicators in Cryptocurrencies" Price Classification Through Deep Learning

Author(s):Marco Ortu, Nicola Uras, Claudio Conversano, Giuseppe Destefanis, Silvia Bartolucci

URL: http://arxiv.org/abs/2102.08189

摘要

由于加密货币市场的高波动性和新机制的存在,预测加密货币的价格是一项众所周知的艰巨任务。在这项工作中,我们重点研究了2017-2020年期间两种主要加密货币以太坊和比特币。通过比较四种不同的深度学习算法(多层感知器(MLP)、卷积神经网络(CNN)、长短期记忆(LSTM)神经网络和注意长短期记忆(ALSTM))和三类特征,对价格波动的可预测性进行了综合分析。特别是,我们考虑将技术指标(如开盘价和收盘价)、交易指标(如移动平均线)和社交指标(如用户情绪)作为分类算法的输入。我们比较了一个仅由技术指标组成的受限模型和一个包括技术、交易和社交媒体指标的非受限模型。结果表明,不受限制的模型优于受限制的模型,即包括交易和社交媒体指标,以及经典的技术变量,使得所有算法的预测精度都有显著提高。

1 简介

在过去十年中,全球市场见证了加密货币交易的兴起和指数增长,全球每日市值达数千亿美元(截至2021年1月达到约1万亿美元)。

最近的调查显示,尽管存在价格波动和市场操纵相关的风险,但机构投资者对新加密资产的需求和兴趣仍在飙升,原因是这些资产的新特性以及当前金融风暴中潜在的价值上升。

繁荣和萧条周期往往由网络效应和更广泛的市场采用引起,使价格难以高精度预测。关于这一问题有大量文献,并提出了许多加密货币价格预测的定量方法[13,15–18]。加密货币的波动性、自相关和多重标度效应的快速波动也得到了广泛的研究[22],同时也研究了它们对初始硬币发行(ICO)的影响[10,11]。 (责任编辑:admin)

织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
栏目列表
推荐内容