受限:输入向量x仅包含技术指标(开盘、闭盘、最高、最低、交易量)。无限制:输入向量x由技术、交易和社交媒体指标组成。 对于限制模型和非限制模型,我们对每个指标使用1个滞后值。这种区分的目的是确定和量化回归向量中添加的交易和社交媒体情绪指标是否会有效改善比特币和以太坊的价格变化分类。 3 方法论 本节描述了我们分析中考虑的深度学习算法,然后讨论了超参数的微调。 3.1多层感知器 多层感知器(MLP)是一类前馈人工神经网络(ANNs),具有多层感知器和典型的激活函数的特点。 最常见的激活功能有: 其中Vi是输入的加权向量。 MLP包含三个主要节点类别:输入层节点、隐藏层节点和输出层节点。除了输入节点外,神经网络的所有节点都是使用非线性激活函数的感知器。MLP不同于线性感知器,因为它具有多层结构和非线性激活函数。 一般来说,MLP神经网络对噪声有很强的抵抗能力,并且在缺失值时也能支持学习和推理。神经网络对映射函数没有很强的假设,很容易学习线性和非线性关系。可以指定任意数量的输入特征,为多维预测提供直接支持。可以指定任意数量的输出值,为多步甚至多变量预测提供直接支持。基于这些原因,MLP神经网络可能对时间序列预测特别有用。 在深度学习技术的最新发展中,整流线性单元(ReLU)是一种分段线性函数,经常被用来解决与sigmoid函数相关的数值问题。ReLU的例子是在-1和1之间变化的双曲正切函数,或者在0和1之间变化的logistic函数。这里第i个节点(神经元)的输出是yi,输入连接的加权和是vi。 通过包含整流器和softmax函数,开发了替代激活函数。径向基函数包括更高级的激活函数(用于径向基网络,另一类监督神经网络模型)。 由于MLPs是完全连接的架构,因此一层中的每个节点用特定的权重wi,j连接到下一层中的每个节点。神经网络的训练采用有监督的反向传播法和最优化方法(随机梯度下降法是一种广泛使用的方法)。数据处理后,感知机通过调整连接权值进行学习,这取决于输出中相对于预期结果的误差量。感知器中的反向传播是最小均方(LMS)算法的推广。 当第n个训练样本呈现给输入层时,输出节点j中的误差量为ej(n)=dj(n)−yj(n),其中d是预测值,y是感知器应生成的实际值。然后,反向传播方法调整节点权重以最小化等式(2)提供的整个输出误差:
|