织梦CMS - 轻松建站从此开始!

我的网站

当前位置: 主页 > 比特币 > 比特币资讯

如何准确预测加密货币价格?交易,技术和社交情绪指标的深度学习算(7)

时间:2021-03-02 14:30来源:未知 作者:admin 点击:
对于情感检测,我们使用2.3中解释的BERT分类器,该分类器使用由Ortu等人[24]开发并由Murgia等人[23]扩展的公共Github情感数据集进行训练。这个数据集特别适

对于情感检测,我们使用2.3中解释的BERT分类器,该分类器使用由Ortu等人[24]开发并由Murgia等人[23]扩展的公共Github情感数据集进行训练。这个数据集特别适合我们的分析,如前一节所述。

该分类器可以检测出爱、愤怒、喜悦和悲伤,F1得分接近0.89。对于VAD指标,我们使用了2.3.1中相同的方法,而对于情绪,我们使用了之前的方法,即BERT深度学习算法,该算法使用了一个公共黄金数据集进行训练,用于在最大和知名的共享数据集的web平台上提供的Reddit评论Kaggle.com.

表14和16以及图9和11显示了这两个比特币子Reddits的统计数据和时间序列,

而表17和15以及图10和12显示了这两个以太坊子Reddits的统计数据和时间序列。

2.4 价格变动分类

目标变量是一个二进制变量,下面列出了两个唯一的类。

上涨:这个类,标记为向上,编码为1,表示价格上涨的情况。下跌:此类标记为向下并用0编码,表示价格下跌的情况。

图13显示了每小时和每日频率的类分布和数据集,突出显示了我们在每小时频率的情况下处理的是相当平衡的分类问题,在每日频率的情况下处理的是稍微不平衡的分类问题。

表18显示了上涨下跌实例的详细信息,比特币的实例分别为48%、5%和51.5%,以太坊的实例分别为49%、8%和50%、2%。对于每日频率,比特币为44%、8%和55.2%,以太坊为48%、5%和51%、5%。对于比特币的日频率,我们有一个稍微不平衡的分布向上类,在这种情况下,我们将考虑f1分数连同准确性,以评估模型的性能。

2.5 时间序列处理

由于我们使用的是有监督学习问题,我们准备我们的数据有一个向量的x输入和y输出与时间相关。在这种情况下,输入向量x称为回归量。x输入包括模型的预测值,即过去的一个或多个值,即所谓的滞后值。输入对应于前面章节中讨论的选定特征的值。目标变量y是二进制变量,可以是0或1。0(down)实例表示价格向下跌。当时间t的收盘价与时间t+1的开盘价之差小于或等于0时,获得时间t的0实例。1(up)实例表示价格向上,即价格上涨情况。当时间t的收盘价与下一时间步t+1的开盘价之差大于0时,得到1实例。我们考虑了两个时间序列模型: (责任编辑:admin)

织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
栏目列表
推荐内容